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Glossary
EvoSysBio A transdisciplinary framework for constructing
reliable, testable, interactive overviews of nestable, dynamic,
multi-dimensional fitness landscapes, which
mechanistically predict: (1) changes in fitness of individual
organisms when their states and environments change;
(2) how populations evolve when organisms traverse fitness
landscapes.
Extra-Organism Biology (EOB) Biology focusing on
actions, reactions, processes, parts, and patterns in
ecosystems that alter states of individual organisms as they
interact with biotic or abiotic environments.
Fitness Causality Network (FCNet) A network of nodes
(defined by IFTs) and links (defined by LIFTs) that describes
causal influences (e.g., genotypes, environments, and initial
states such as maternal methylation patterns of DNA) on
consequential IFTs (e.g., survival, reproduction) in a given
time period.
Fitness landscape An abstract ‘landscape’ defined by
causal ‘positions in a plane’ and their consequential ‘heights,’
as defined by a corresponding Fitness Causality Network.
Incomplete Fitness Trait (IFT) A phenotypic trait that
impacts the fitness of an organism, its offspring, or its
genetic relatives and that, at least occasionally, affects rates
of survival, reproduction, merging, etc., or modifies
evolutionary factors like mutation rates in one or more
environments.
Intra-Organism Biology (IOB) Biology focusing on
actions, reactions, processes, parts, and patterns within a
single, individual organism that enable it to live (grow,
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survive, reproduce, move, etc.) by changing its state in a
given environment.
Landscape of Incomplete Fitness Traits (LIFT) An
abstract representation of a fitness landscape that maps
causal IFTs to consequential IFTs, thus providing a causality
statement about how input governs output, comparable to
probabilistic mathematical functions.
Nest Organism A single, individual organism that is the
environment for one or more populations of different types
of nested organisms, which may themselves be nest
organisms.
Nested Organism A single, individual organism that is
contained by an encapsulating nest organism, which is the
nested organism’s environment and may itself be nested in
a larger organism of a different type.
Organism A single, individual system that consists of
different parts that builds a whole, which – in biology –

must be able to replicate and may be nestable.
Population-Genetics Biology (PGB) Biology focusing on
heritable information (genotypes, alleles, traits, methylation
patterns, etc.) that can directly or indirectly affect IFTs
(survival, reproduction, etc.) when passed on by individual
organisms in evolving populations.
Trans-Organism Biology (TOB) Biology focusing on
integrating Extra-Organism Biology (EOB), Population-
Genetics Biology (PGB), and all direct or indirect actions,
processes, and patterns that otherwise fall through the
disciplinary cracks of EOB or PGB (excluding the inside of
organisms).
Systems approaches to biology and genome evolution are be-
coming increasingly important. Since the 1920s, the New
Evolutionary Synthesis has been constructing an increasingly
coherent view of evolution by synthesizing ideas from different
parts of biology. Further progress of this relentless synthesis
will increasingly depend on crossing disciplinary boundaries,
complex simulations of biological systems, and reliable
reproducibility. Evolutionary Systems Biology (EvoSysBio) is
defined here as working towards integrated interactive over-
views of dynamic multi-dimensional fitness landscapes that are
testable in the real world and enable the prediction of evo-
lution. EvoSysBio further formalizes the New Synthesis as il-
lustrated here for cancer and antibiotics resistance evolution.
Systems Approaches to Genome Evolution

Biology has a long history with numerous independent efforts
to integrate diverse aspects of biological systems in order to
understand the whole. For example, R.A. Fisher (1918) re-
solved a big controversy about inheritance by creating an in-
tegrative systems model with a mechanism for combining the
varying effects by which different genes could impact a given
phenotypic trait. The rise of population genetics has since in-
spired mechanistic modeling of how systems with populations
of organisms evolve in response to the five fundamental fac-
tors of evolution, which may vary between these biological
extremes over space and time:

1. mutation (perfect heritability ⇆ fast change);
2. selection (harmful ⇆ neutral ⇆ helpful);
3. genetic drift (last survivor ⇆ largest finite population);
4. recombination (complete linkage ⇆ free segregation); and
5. migration (homogeneity of space ⇆ movement maxi-

mizing impact of heterogeneity).

These factors are fundamental, since they affect all real-world
populations of organisms with a phenotype capable of repro-
ducing heritable variations; the complexity of evolutionary
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outcomes (see this Encyclopedia) is fueled by variations of
these factors over space and time at nested levels of replication.
Simple interactions are well understood, but complex, dy-
namic patterns in heterogeneous, nested, multi-locus systems
pose many questions that will keep defining the cutting-edge
of population genetics for a long time to come (Loewe and
Hill, 2010a,b). There is no better theory of evolution than
population genetics, the ‘auto-mechanics of evolution’ (Singh
and Krimbas, 2000, p.1); yet it has much room for growth
by integrating expertise from biochemical reaction networks
to ecological interactions. For example, biochemistry was in-
strumental for generally understanding dominance in hetero-
zygous genes (Kacser and Burns, 1981); now more detailed,
dynamic models could explain patterns observed in specific
genes. Population genetics can be abstract, ignoring many
details (Haldane, 1964), yet its core abstractions are powerful
enough for mechanistically connecting intra-organism and
trans-organism biology and their environments with the
phylogenetic patterns they govern together (see Table 1). The
power of these abstractions places population genetics in
a remarkably central role in biology and makes it very difficult
to ignore whenever populations of replicating organisms are
involved.

This article points to various systems approaches in biology
and how they connect to population genetics, starting
with Current Systems Biology (CSysBio) and increasingly im-
portant aspects of formal and computational modeling. Sec-
tion ‘Defining EvoSysBio’ uses abstractions from population
genetics to define EvoSysBio without loss of generality. Section
‘Fitness Landscapes’ discusses Landscapes of Incomplete Fit-
ness Traits (LIFTs), which help to define EvoSysBio and rep-
resent the best albeit fractured glimpses of true fitness
landscapes that will be available for a long time. The last
section presents examples of five important milestones for
EvoSysBio.
Current Systems Biology

Systems approaches in biology emerged from a confluence of
several broad trends:

(i) Researchers have always known that cellular molecules
had a complex context, but this complexity came into
focus only after enough details accumulated from
studying isolated molecules.

(ii) Increases in computing power inspired developers of
quantitative and computational methods in biology,
ushering in the era of bioinformatics and genomics.

(iii) As genome sequencing matured, some perceived its data-
driven discoveries to lack inspiring transformational
hypotheses; this fueled a desire for more hypothesis-
driven quantitative models and opened biology up to
many physicists and engineers excited about modeling.

(iv) Medical interest in understanding how varied diseases
work in humans motivated the Human Genome Project
(‘read the blueprint’), but locating candidate disease genes
rarely satisfied curiosity (‘understand the blueprint’). As
differences between genomes were revealed, they stimu-
lated interest in personalizing medicine (‘understand my
blueprint’ (Hood et al., 2004)). A theoretical framework
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could guide the long journey from wishing to actually
understanding biology.

These trends supported the rise of CSysBio, which can
employ data from genomics and other -omics to construct a
more integrated view of molecular interactions, ideally by
simulating them in dynamic mechanistic models that yield
predictions to be tested by perturbations in high-throughput
experiments (Ideker et al., 2001b). It was initially contrasted to
(1) a deep-but-narrow focus on functions of isolated mol-
ecules, and (2) a broad-but-shallow, data-driven genomic
search for candidate genes with functional annotations, but
without corresponding mechanistic models (Ideker et al.,
2001a). CSysBio started in molecular biology (Westerhoff and
Palsson, 2004), and since it has been expanding its scope to
include cells, physiology, and more, it still lacks a generally
agreed-upon definition. Some see it as a cycle that could
characterize any system (Kitano, 2002a,b; Ideker et al., 2001a):

(i) collect all details possibly relevant for a given system and
research question;

(ii) define a quantitative model with all parts and inter-
actions relevant to the question;

(iii) predict from the model properties of observable real-
world perturbations;

(iv) test the model by comparing its predictions to relevant
real-world data;

(v) refine the model if the distance between predictions and
real-world data is too large (as usual), or expand it by
including new questions.

This definition reassuringly echoes the Scientific Method;
absence of system types studied, methods applied or questions
asked, it is also too general for any field, which risks defining
CSysBio only in ‘the eye of the beholder.’ Despite difficulties
of definition and adoption of more thorough systems per-
spectives (Cornish-Bowden, 2006), CSysBio has been pro-
ducing some impressive mechanistic models of systems
ranging from the molecular to the physiological, including:
circadian clocks (Dodd et al., 2005; Huang et al., 2012),
metabolic fluxes in microbes (Edwards et al., 2001; King et al.,
2015), viral replication (Endy et al., 2000; Lim and Yin, 2009),
full intracellular dynamics over a simple cell cycle (Karr et al.,
2012), human heart (Noble, 2011), rat physiology (Virtual
Rat, see Section Relevant Websites), and more, occasionally
even venturing beyond Intra-Organism Biology (IOB) into
topics such as evolution.
Current Systems Biology Meets Evolution

Most CSysBio works toward empirically supported models of
processes that help genotypes and environments shape
phenotypes. However, if CSysBio models include replicating
entities with traits that are both heritable and mutable, then
these need to be treated as organisms in their own right.
Heritable variation of such traits inevitably activates the five
factors with all their complicated dynamics. If evolutionary
processes occur within multicellular organisms, they are easily
overlooked even if they are highly relevant for medicine,
such as the evolution of tumor cell populations in cancer
(Stearns and Koella, 2008). Similarly, fast evolution of bacteria
volutionary Biology, vol 4, pp 297–318, Academic Press, Oxford, UK. Evosysbio.org
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Figure 1 Rise of some terms related to systems approaches
in biology as tracked by changes of frequency in books digitized by
Google (terms are case insensitive; in relative units of 1E0.000 037%;
all big data cautions apply; Michel et al., 2011). Data credit: https://
books.google.com/ngrams.
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(Edwards et al., 2001) could be important to understand for
industrial production plants.

Understanding population genetics mechanisms helps to
recognize evolutionary processes and select the right types of
tools and theorems for modeling them. Without some grasp
of past population genetics work, researchers risk needlessly
re-deriving past results instead of building on them. Trends in
Figure 1 might provide rough indicators of this rich history
(all caveats about ‘big data’ apply).
Ecological Systems Biology

CSysBio contrasts with an earlier era of ‘systems theory in
biology,’ which inspired ecologists in the 1970s to build
causal models of ecological systems (Wolkenhauer, 2001).
As a discipline, ecology has learned important lessons about
how to deal with extreme uncertainty and has accumulated
statistical expertise in the art of developing knowledge by
using empirical tests against real-world data to reduce un-
certainty in models of complex systems. CSysBio can learn
from Ecology’s experience in quantifying uncertainty (Kirk
et al., 2015).

Advances in computing and the availability of ‘big data’ for
some specific parts of systems provide opportunities for im-
proving models from cells to ecosystems (e.g., high-resolution
images inside cells and more (Editorial, 2015; Dietze et al.,
2013; Mackechnie et al., 2011; Seksik and Landman, 2015;
Sleeman, 2013; Xu and Rhee, 2014; Kuhlbrandt, 2014;
Aronson and Rehm, 2015). However, this does not solve all
modeling challenges. Integrating big data into mechanistic
models can be difficult or infeasible; critical model details
sometimes exist only as diffuse and diverse datasets in myriads
of formats, and unknown parameters may only be amenable
to ‘guesstimating.’ Such challenges for an integrated under-
standing can be substantial; appropriate advanced modeling
techniques may help, but without special measures it can be
surprisingly difficult to reproduce results from increasingly
complex computations and statistics (James et al., 2015;
Loewe (2016) Systems in Evolutionary Systems Biology. In: Kliman (ed) Encyclopedia of E
Stodden, 2015). These trends matter for complex models of
evolution and their corresponding sub-models.
Systems Genetics

The new field of systems genetics builds on genetics, genomics,
‘phenomics,’ more -omics, CSysBio, and other fields to better
integrate insights about how genotypes shape phenotypes
in different environments (Hughes, 2010; Markowetz and
Boutros, 2015) with huge medical implications (Aronson and
Rehm, 2015). It combines into genome-wide association
studies (GWAS) as many triplets as possible, each containing
an individual genome, respective quantitative phenotypes
(molecular and organismal), and a record of environmental
conditions that shaped the genotype–phenotype map of these
organisms. It aims to obtain integrated models that highlight
which genes have probably been affected by selection on
organisms with a specified phenotype in a given environment.
Advanced statistical techniques used in GWAS provide em-
pirical estimates about how much a given gene might have
contributed to a particular trait of interest, thus identifying
candidate genes that may cause important phenotypic func-
tions. Systems genetics methods work because patterns of DNA
sequence diversity contain information on the strength of the
environment’s selection of certain phenotypic traits, which af-
fects the survival probabilities of organisms with corresponding
mutations. Patterns in modern genomes echo a long history of
selection. Examples include studies in the fruit fly Drosophila
melanogaster (Anholt and Mackay, 2015; Huang et al., 2014;
Mackay et al., 2009; Harbison et al., 2009; Ayroles et al., 2009).

Systems genetics provides a different perspective on the
complex gene regulatory networks that govern phenotypes,
which are also studied in CSysBio; thus in principle, both
could combine their strength. For example, many unknowns
often exist in detailed, mechanistic models of complex gene
regulatory networks that could, in principle, predict pheno-
types also amenable to systems genetics. Thus, GWAS may
constrain overly large parameter spaces in mechanistic models,
while CSysBio simulations may add mechanistic details about
genetic architecture by highlighting genes with effects too
small to detect in GWAS.
Integration

Better understanding evolution weakens boundaries between
diverse systems approaches in biology, as evolution is its big-
gest system. Molecular systems biology can only study systems
shaped by evolution (excludes extinct species), while systems
ecology and evolution critically depend on biochemistry; sys-
tems genetics relies on all to shape the statistical patterns of
genetic diversity in populations, and initiatives in ‘personalized
precision medicine’ aiming to predict clinical consequences of
genetic variants (Aronson and Rehm, 2015) will hardly be able
to do so without computational models (Iyengar et al., 2015),
which will both inform and be informed by a profound
understanding of evolution (Stearns and Koella, 2008). Con-
tinuing progress on this integrative trajectory increasingly
depends on modeling skills and leads to the mechanistic view
of EvoSysBio discussed in the next section.
volutionary Biology, vol 4, pp 297–318, Academic Press, Oxford, UK. Evosysbio.org
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Systems Science: The Whole is Different from the Sum of Its
Parts

The realization that a system as a whole can be very different
from a heap of its parts is at least as old as Aristotle
(� 344722). It also has long guided Gestalt theory, arguably
an early form of systems science (Wagemans et al., 2012b)
used to study sensory perception (Wagemans et al., 2012a),
which undoubtedly affects the evolution of species reliant on
learned mental models for navigating their world. Investi-
gating how elements combine into a ‘Gestalt’ also inspired
the thought that – at least in principle – the whole world
could be understood with a single mathematical equation,
albeit of extravagant composite complexity (von Ehrenfels,
1890, p. 292).

Computational models in systems science essentially pro-
vide such ‘world-equations,’ if only for the small, closed
worlds described in the composite formal structures called
‘programs.’ Modeling investigates the whole by studying rele-
vant parts, their interactions, and systemic properties. Good
models usually start with a curiosity, informal questions, and a
hunch. They grow as researchers integrate more observations
and are eventually formalized as small, computable worlds
that mimic relevant interactions of parts and the emergent
properties of their whole. The main results of systems science
are empirically tested models that become more valuable as
they survive increasingly difficult challenges to mechanistically
predict non-trivial phenomena. To develop such models, it is
essential to actually look at the whole repeatedly and from
different perspectives, which seems to be challenging even for
systems biologists (Cornish-Bowden, 2006). It helps to know
what types of systems others have already seen and which
models were developed as a result.

Types of models can be classified in many broad categories
using various criteria, such as their approach to randomness in
the system, how they are computed, which values they allow,
etc.; the myriad modeling approaches needed for under-
standing evolution could easily fill an encyclopedia the size of
this one (and indeed fill many pages in this Encyclopedia too).
Examples include approaches that are

• deterministic: assumes no chance exists, so recomputing al-
ways produces the same result;

• stochastic: chance exists, so recomputing always produces
variable outcomes as computers use random number gen-
erators to choose between possible outcomes;

• probabilistic: effects of chance are modeled as probability
distributions that can form complicated networks, which
can be analyzed deterministically or stochastically;

• equilibrium: no effective changes over time can be observed,
for example, in steady-state balance;

• nonequilibrium: the system is dynamic and changes
over time.

Additional incomplete and overlapping classifications of
modeling approaches may serve as search terms, illustrating
model diversity and jumpstarting further investigations for
readers: backwards in time (e.g., coalescent models) ⇆ for-
wards in time (e.g., individual-based simulations); analytic ⇆
numeric ⇆ computational; binary ⇆ integer ⇆ continuous;
constrained by input ⇆ output ⇆ equations; mechanistic ⇆
Loewe (2016) Systems in Evolutionary Systems Biology. In: Kliman (ed) Encyclopedia of E
descriptive; absence of submodels ⇆ multilevel nesting; linear
⇆ nonlinear; time-based ⇆ event-based ⇆ static; graph-based
⇆ matrix-based ⇆ agent-based ⇆ logic-based (see Zeigler,
2012; Thiele et al., 2012; E, 2011; Grimm and Railsback, 2005;
Zeigler et al., 2000; Law and Kelton, 2000). There are many
more computer programming paradigms that also expand the
list. In fact, Gödel’s incompleteness theorem of mathematical
formalisms suggests that infinitely many modeling and
programming approaches exist, each of which is extremely
powerful. Many different such approaches need to come
together to enable the modeling of nested multi-scale evo-
lution of diverse organisms from a rigorous probability theory
perspective. We are very far from this goal; to make progress,
we need a better grasp of the limits of various modeling
approaches and how they might complement each other.

After a eureka experience of realizing how many questions
could be answered by just one approach, researchers can be
tempted to ignore its limits. However, even if the approach is
a great hammer, not every problem is a nail. Ignoring these
limits is dangerous when software assuming one model is
applied to data for which the assumed model does not hold.
This is particularly true for the many tools that do not auto-
matically check for such problems (contributing much to
the current reproducibility crisis). Biologists familiar with a
broader range of modeling approaches are in a better position
to choose a more reasonable approach for their biological
question.

Model-building for any particular biological system is more
efficient when researchers (1) have clear questions for their
model, (2) can choose from a broad range of approaches to
construct models, and (3) are well supported by corres-
ponding tools that help to quantify uncertainty, detect mod-
eling errors, and document results. Most approaches worth
learning mirror certain modeling problems in biology ex-
tremely well and reasonably approximate others; however, all
fail for some real-world systems, either due to unreasonable
assumptions or computational intractability.

For any complex real-world problem, even the best models
will always differ from reality and easily become misleading if
interpreted from perspectives that violate their simplifying
assumptions. Hence, the conclusion of the famous statistician
George Box: “All models are wrong, but some are useful” (see Box
and Draper, 2007, p. 414). Such usefulness either increases our
mechanistic understanding or translates into success at pre-
diction challenges in the real-world, where models are tested
against empirical data. Estimating parameters for many bio-
logical models is a substantial challenge: the sloppy parameter
sensitivities make it impossible to predict the importance of a
given parameter without simulation, even in small nonlinear
CSysBio models (Gutenkunst et al., 2007). Difficulties com-
pound for whole-cell models (Karr et al., 2015), which suffer
from the curse of dimensionality as the number of parameters
increases. Aiming for reasonable reliability, complex models
in CSysBio and elsewhere must quantify their uncertainty
(Kirk et al., 2015) and may want to manage their error budget
(Parysow et al., 2000). It is important for the reproducibility at
the heart of science to avoid illusionary precision (Stodden,
2015). A combination of reasonable models and efficient tools
can vastly expand a biologist’s thinking capabilities and will be
essential for reliable EvoSysBio analyses discussed below.
volutionary Biology, vol 4, pp 297–318, Academic Press, Oxford, UK. Evosysbio.org
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Systems Approaches Are Young

Systems modeling, big data and computational science (e.g.,
HPC university, see Section Relevant Websites) are young and
lack the centuries of aggregated experience in weeding out
unreliable results – unlike mathematics, physics, chemistry,
and biology. The beginning of the previous section illustrates
many problems in computational science simply by at-
tempting to referencing Aristotle in the usual style: missing
data (surname), data beyond an unreasonably narrow range
(BCE), and uncertainty (year 722); if this were input for a
scientific simulation, chances are that nobody would realize
the hidden bias it introduces unless the model ‘misbehaves’
and produces ‘unreasonable’ results (as judged by competent,
but not infallible experts).

The biggest challenge of the field is to improve the quality
of models so they (1) describe causality chains that connect
real-world input and assumptions to real-world output and
conclusions in a reasonable way, (2) are complete, clear, and
contradiction-free, (3) are readable and well documented for
semantic reproducibility, (4) accurately quantify uncertainty
of all claims for statistical reproducibility and explicitly define
limits of applicability, (5) continually integrate new evidence
as it becomes available, (6) run reproducible tests to reject
claims that are not compatible with increasingly accurate
observations, and (7) automatically trigger updates of other
models that build on its output.

Reasonable models satisfy (1)–(4) for the data and evidence
available at construction, but need (5)–(7) to activate them.
State-of-the-art modeling is advanced enough to inspire such
noble goals, but current model reliability is often much less
clear. Much time, effort and organization will be required
before such high-quality models can become standard in
biology (Macklin et al., 2014). Progress might be accelerated
by dropping the principally impossible aims to ‘validate’ or
‘verify’ models of the natural world, which is not a closed
system (Oreskes et al., 1994). ‘Validation’ could more likely
stifle further testing than encourage curious critical exploration
of the ‘valid.’ The reliability of a model can be measured by its
ability to withstand diverse and difficult tests that contrast
model claims with the real world.

Questions are keys, models are locks. The key to assessing the
reliability of a model is in the questions that motivated
building it and that defined its purpose. This insight is both
simple and profound. It is easy to see that the street map of a
city (a type of model) does not help determine geological
strata (wrong question for this model). It usually takes much
more experience to identify similar model-data mismatches in
‘big data’ collections, which can be analyzed using unreason-
able models to generate irreproducible results (Stodden,
2015). Hence remembering the question and relevant trans-
formations is essential for avoiding results like ’42,’ also
known as the answer to everything (Adams, 1979).

Questions that drive models are also essential for deter-
mining the level of details to include, which can be increased
(fine-graining) or decreased (coarse-graining) in almost all
cases. These decisions determine required parameters to be
measured, indirectly estimated, collected from the literature,
or imported from appropriate databases (such as Brenda-
Enzymes for kinetic parameters or BioNumbers for cell
Loewe (2016) Systems in Evolutionary Systems Biology. In: Kliman (ed) Encyclopedia of E
biology, see Section Relevant Websites). Much of the value of
the abstractions developed by the New Evolutionary Synthesis
since the 1920s is in their ability to guide coarse-graining and
fine-graining across vast parts of biology. The formal Evo-
SysBio framework discussed below further refines this process.

Optimistically, and with some organization and standard-
ization, the transition toward reliable computational model-
ing in biology will require far less time than the centuries it
took to move from alchemy to chemistry. EvoSysBio could
help catalyze these efforts, and the definitions of IOB, EOB,
PGB, and TOB given in Table 1 could be a step on the way.
Defining EvoSysBio

EvoSysBio, in its fullest form requires a union of insights
from three very broad areas of research: evolutionary research
(studies replicators, sometimes beyond biology), systems sci-
ence (studies dynamic things consisting of parts), and biology
(studies all aspects of carbon based life). Without such a
union of insights and matching computational tools, progress
in EvoSysBio remains a distant dream or a daunting yet
diffuse challenge. This integrative reading of EvoSysBio reflects
its trans-disciplinary mission to build bridges between many
diverse disciplines, making it both extraordinarily broad
and deep.

However, English syntax interprets combined terms as
intersections, so that ‘EvoSysBio’ is less general than ‘SysBio,’
which already specializes ‘Bio,’ just as in ‘House Keys.’ This
reading might see EvoSysBio as a highly specialized add-on
with narrow applicability, a view hardly appropriate on prin-
cipal grounds: virtually every ‘thing’ studied in biology can
also be studied with the tools of systems science and has also
been evolving or playing a role in evolution. Thus, EvoSysBio
represents a panoramic perspective that matters for quantify-
ing change over time in systems with self-replication.

This astonishing breadth of EvoSysBio implies that its
results can depend on preceding breakthroughs in far-flung
fields of evolution, systems biology, computing, and other
disciplines, often developed by researchers without interests
in EvoSysBio, evolution, or related topics. Once fully grown,
EvoSysBio will be more keystone than add-on, as it brings
together various tall pillars of evidence quantified with enough
precision to meet in one place, essentially stabilizing the
enormously complex structure of biology as a discipline.

Thus, EvoSysBio is much more than the occasional appli-
cation of evolutionary insights in CSysBio or the occasional
inclusion of metabolic network analyses in evolutionary
genetics (see, e.g., Klipp et al., 2009; Voit, 2013; Caetano-
Anolles, 2010; Walhout et al., 2013). Different attempts have
been made to define EvoSysBio (Loewe, 2009, 2012; O’Malley,
2012; O’Malley and Soyer, 2012; Soyer and O’Malley, 2013;
O’Malley et al., 2015). To help clarify its contributions, the
definition of EvoSysBio below integrates previous definitions
and provides formal abstractions that can facilitate quantita-
tive connections to the diverse, descriptive, experimental, and
theoretical contributions necessary for building the rational
models essential to EvoSysBio. Since EvoSysBio’s core goal
is to explain how evolution works mechanistically, it inherits
the astonishing integrative abilities of evolutionary theory.
volutionary Biology, vol 4, pp 297–318, Academic Press, Oxford, UK. Evosysbio.org



Table 1 Relationships among different focuses in biology

Focus of study Relationship to other focuses

Intra-Organism Biology (IOB) Focuses on actions, reactions, processes, parts, and patterns within a
single, individual organism that enable it to live (grow, survive,
reproduce, move, etc.) by changing its state in a given environment. IOB
models simplify TOB models by assuming that genotypes and
environmental interactions only matter where explicitly specified for a
given individual organism and the nested organisms it may contain (e.g.,
gut bacteria, parasites, cancer cells). IOB details depend on
environments; if the latter are known, then IOB allows in principle the
prediction of all relevant fitness traits by constructing a complete Fitness
Causality Network (see Table 2).

intra, Latin for ‘inside.’
Relevant disciplines:
Biochemistry, molecular biology, gene regulation network biology, cell
biology, cancer biology, developmental biology, physiology,
neurobiology, and more.

Extra-Organism Biology (EOB) Focuses on actions, reactions, processes, parts, and patterns in
ecosystems that alter states of individual organisms by interacting with
biotic or abiotic environments. EOB models simplify PGB models by
explicitly listing all relevant genotypic differences and assuming that no
others matter. EOB models implicitly simplify IOB models by providing
corresponding rates of interaction between individual organisms of the
same or different types, even if these interactions are ultimately governed
by biochemistry. Nested organisms have nested EOB ecosystems.

extra, Latin for ‘outside.’
Relevant disciplines:
Ecology, biogeochemistry, climate science, population ecology, community
ecology, ecosystem ecology, behavioral ecology, cognitive ecology,
social ecology, and more.

Population-Genetics Biology (PGB) Focuses on heritable information (genotypes, alleles, traits, methylation
patterns, etc.) that can directly or indirectly affect fitness traits like
survival and reproduction when passed on by individual organisms in
evolving populations. PGB models simplify EOB models by using simple
demographics (e.g., constant, exponential growth) to explicitly or
implicitly summarize complex ecological mechanisms. PGB models also
simplify IOB models to approximate genotype–phenotype-fitness maps
for a given environment (e.g., multiplicative fitness models). An extreme
focus on counting alleles in a population can turn PGB into efficient but
abstract ‘Bean-Bag Genetics’ (Haldane, 1964). Nesting works as in EOB.

genetikos, Classic Greek for ‘generative’
γένεsις, Classic Greek for ‘origin.’

Relevant disciplines:
Population genetics of single and multiple loci, quantitative genetics,
breeding, coalescent theory, population genomics, population
epigenetics, and more.

Trans-Organism Biology (TOB) Focuses on integrating EOB, PGB, and all direct or indirect actions,
processes, and patterns that otherwise fall through the disciplinary cracks
of EOB or PGB (excluding the inside of organisms). TOB models simplify
IOB models. Examples range from the inclusive fitness of relatives
(Gardner and West, 2014) to environmental DNA abundances in
metagenomics (Wooley et al., 2010) and phylogenetics at any nesting
level (Felsenstein, 2004) or genotype by environment interactions
(Pavlicev and Wagner, 2015). Nesting works as in EOB.

trans, Latin for ‘beyond’
Relevant disciplines:
Evolutionary ecology, conservation biology, coevolution, sociobiology,
metagenomics, phylogenetics, and more.

Evolutionary Systems Biology (EvoSysBio) As a field, EvoSysBio has so far mostly used various informal definitions,
which are not broader than the more formal definition given in the main
text.

Integrating ‘keystone,’ not ‘add-on’
Relevant disciplines:
All of above and more, including data science, computational modeling,
network biology, information management, integrative biology or just
‘biology’

Formal EvoSysBio: focuses on developing more reliable real-world ‘flight-
simulators for fitness landscapes’ by integrating IOB and TOB using the
five fundamental factors of evolution. Formal EvoSysBio drops the
problematic aim to directly quantify the complex multi-dimensional
dynamics of real-world fitness landscapes. Instead, it progresses by
constructing Fitness Causality Networks (FCNets), which quantify and
connect different types of Landscapes of Incomplete Fitness Traits
(LIFTs; see Tables 2 and 3); formal EvoSysBio can then simulate evolving
populations governed by dynamic, mechanistic IFT predictions from
these FCNets.

Informal EvoSysBio: builds bridges between IOB (‘Current Systems
Biology’) and TOB (‘Evolutionary Biology’). Even if using different
terminology and not motivated by fitness landscapes, informal EvoSysBio
results often contribute toward a better understanding of details that
might directly or indirectly help to better quantify LIFTs.

Notes: The different interests of biologists often distinguish their focuses when studying organisms (see Table 2 for definitions). To create models relevant for their focus, researchers
often simplify the models created by peers with other interests. EvoSysBio aims to integrate Intra-Organism and Trans-Organism Biology by using the five fundamental factors of
evolution as shared abstractions to facilitate the construction of fitness landscapes. Other biological disciplines provide integration from different perspectives, for example, those of
focal organisms (e.g., botany, virology, zoology), habitats (e.g., limnology), problems (e.g., cancer biology), organizational levels (e.g., cell biology), disciplines (e.g., biophysics),
and more; but it is difficult to find biological theories more general than those evolutionary theories that enable, in principle, the construction of appropriately quantified fitness
landscapes, thereby requiring the integration of vast amounts of biological results (Figure 2).
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This integrative power can best be understood by reviewing
how the definition of EvoSysBio developed in the past decade.
Partial Approaches

CSysBio has produced many analyses of molecular interaction
networks; accordingly, ‘evolutionary systems biology’ has been
used from the very beginning to denote the comparison of
such molecular networks among different biological species
(Stearns et al., 2003; Medina, 2005). Such use might appear to
contrast with more mechanistic frameworks (e.g., Loewe,
2009), which build on simulations that directly or indirectly
include network interactions along with many other details
affecting a system’s dynamics. Network analyses often need
only small subsets of the data required by corresponding
mechanistic simulations. Therefore, collecting more data on
the same system can, in principle, provide a common basis
for using both approaches to ask the shared question of how
life evolves. It seems unnecessarily confusing to fragment
EvoSysBio into many different sub-definitions; one focusing
on network analysis, another for mechanistic simulations, and
many more for different methodological approaches (e.g., flux-
balance-analysis (Ibarra et al., 2002; Papp et al., 2011), meta-
bolic control theory (Kacser and Burns, 1981; Keightley,
1996), systems genetics (Markowetz and Boutros, 2015),
etc.), others for different biological levels of organization (e.g.,
molecular functions (Dean and Thornton, 2007), cells (Lynch
et al., 2014), epigenetics (Hallgrimsson and Hall, 2011), de-
velopment (Carroll, 2008), ecology (Pelletier et al., 2009),
etc.), and others for different biological questions (e.g., energetics
(Watt, 1985), modularity (Wagner et al., 2007), robustness
(Payne and Wagner, 2014), game strategies (Pacheco et al.,
2014; Bohl et al., 2014; Hummert et al., 2014), etc.), or
even focusing on different perspectives provided by the five fun-
damental factors, mutation (e.g., Loewe and Hill, 2010a,b),
selection (e.g., Okasha, 2006), genetic drift (e.g., Lynch, 2007),
recombination (e.g., Charlesworth et al., 2009), and space
(e.g., Westervelt and Cohen, 2012). All these contribute dif-
ferent important aspects to EvoSysBio, but where would the
splintering stop?

Darwin and subsequent evolutionary geneticists have
convincingly demonstrated the abstract elegance and unity
of evolution based on the five fundamental factors. They
demonstrated, in principle and with many examples, how
these factors combined into a mechanism powerful enough to
create the bewildering diversity of species and biological
phenomena just by variations in the patterns of strengths of its
fundamental factors. Ideally, the conceptual beauty of evo-
lutionary genetics at the core of EvoSysBio will enable different
important lines of EvoSysBio inquiry to sharpen evolutionary
theory by extending a single consistent set of abstractions,
which will make it easier for future researchers to build on its
foundation. By comparison, defining different vital aspects
of EvoSysBio in conflicting but partially overlapping terms
seems less desirable if no clear conceptual integration can be
provided.

Thus, the question of splintering EvoSysBio is related to
the question of whether it is essential to extend evolutionary
theory in any unusual way, for example, to integrate TOB
interactions between genotypes and environments (Laland
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et al., 2014). There is no doubt that evolutionary theory needs
to be extended in many ways or else research would stop, but
it seems unnecessary to extend it in any unusual way beyond its
continued extension ‘through relentless synthesis’ (Wray et al.,
2014). EvoSysBio can add to this relentless New Synthesis in
many ways, ideally by quantifying aspects that are necessary
for mechanistically predicting evolution, one of the highest
goals in evolutionary biology since Fisher, Wright, and Hal-
dane laid the groundwork for the New Evolutionary Synthesis.
The wish to avoid the splintering of disciplines has also in-
spired the wish to reintegrate all biological subdisciplines into
a ‘New Biology’ (National Research Council USA, 2009).
Pragmatic Definitions

EvoSysBio has been defined as an effort to build bridges be-
tween CSysBio and evolutionary biology, integrating theore-
tical tools, experimental methods, and datasets from multiple
disciplines into an evolutionary framework (see Figure 2;
Soyer and O’Malley, 2013; Loewe, 2009). Comparable in
breadth to CSysBio, this broad definition easily encompasses
the diverse work associated with EvoSysBio (e.g. studies in the
volume edited by Soyer (2012) and studies cited by Loewe
(2009) and below). However, a more precise definition
without loss of generality would be preferred, as it could fa-
cilitate creating powerful formal interfaces between EvoSysBio
and other fields. These interfaces could help to interpret data
collected elsewhere in its bigger evolutionary context. Con-
ceptual advantages like these motivate a continued search for
more precise definitions of EvoSysBio.
Formalizing EvoSysBio without Loss of Generality

Indeed, it turns out that EvoSysBio can be defined more pre-
cisely without loss of generality by building on the powers
of abstraction offered by evolutionary theory. At the heart
of this definition of EvoSysBio are evolving populations of
individual replicating organisms, where evolution is governed by
their fitness landscapes, a metaphor for mathematical causality
statements about the traits of evolving populations in an
abstract space with very many dimensions (see Table 2 and
Section Fitness Landscapes for more details).

To give EvoSysBio something to study, individual organ-
isms have to exist and be near-perfect replicators of genotypic
information, which affects phenotypic fitness traits like sur-
vival and reproduction in finite discrete populations. Hence, in
these organisms all five fundamental factors of evolution can
be active. This generic view includes viruses, microbes, and
multicellular organisms (nested replicators), but also a fringe
with exotic systems such as ribozymes (Martin et al., 2015),
prions (Li et al., 2010), and data structures in computers (as
exploited in biological individual-based simulations (Grimm
and Railsback, 2005), evolutionary computation (De Jong,
2006), and artificial life studies (Adami, 1998)). Using the
abstractions of evolutionary theory enables simulated popu-
lations with appropriately chosen parameters to closely
mimic natural populations, facilitating their study. Organisms
defined in this general way make it possible to see EvoSysBio
as an integrating bridge between the great quantitative tradi-
tions of modern biology that complement each other through
Evolutionary Biology, vol 4, pp 297–318, Academic Press, Oxford, UK. Evosysbio.org



Intra-Organism
Biology

Why EvoSysBio?

Quantify the 5 fundamental factors of evolution by 
integrating rigorous models from across biology

Trans-Organism
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Organisms:
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Modeled
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Better predictions of evolution
based on mechanistic insights

=
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Figure 2 Overview of EvoSysBio integration. Traditionally, models from Intra-Organism Biology (IOB) and Trans-Organism Biology (TOB) have
ignored each other to simplify rigorous modeling in their respective domains. This separation of concerns is facilitated by powerful abstractions
such as the fitness of individual organisms and the five fundamental factors of evolution. When this separation fails at the cutting-edge of
research, EvoSysBio offers a reversal that uses the same abstractions to bond branches of biology together. By measuring fitness traits of
individual organisms and their contributions to the five factors, EvoSysBio enables asking new trans-disciplinary questions in addition to rigorously
quantifying fitness landscapes. Fitness is either affected by – or itself affects – almost everything in biology, and ‘nonquantitative’ biology often
breaks the conceptual ground for more precise studies; such observations have suggested: nothing in biology makes sense except when properly
quantified in the light of evolution (Dobzhansky, 1973; Loewe, 2009). Picture credits: © Laurence Loewe (2015a), reuse under CC-BY 4.0, updated
from previous versions (Loewe, 2009, 2012).
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abstractions pioneered in population genetics (see Table 1 and
Figure 2):

(i) Intra-Organism Biology (IOB): biochemistry, molecular-,
cell-,… -biology,… physiology; organisms may be nested
(e.g., mitochondria in cells in humans; similarly gut
bacteria, parasites, cancer cells, etc.). If nested, the IOB of
the containing organism provides an environment for
the smaller contained organisms, all of which come with
their own IOB and TOB.

(ii) Trans-Organism Biology (TOB): includes Extra-Organism
Biology (EOB) disciplines such as ecology, Population
Genetics Biology (PGB), the complementary genomics
disciplines, and many diverse genotype-environment
interactions (Pavlicev and Wagner, 2015). Nesting applies
here too.

Over many decades, these traditions have produced out-
standing empirical results and rigorous theory in their re-
spective areas by using evolutionary fitness as a powerful
abstraction for enabling an efficient separation of concerns.
Both remain far from reaching their long-term goals: research
in organisms ultimately aims to predict fitness and other
phenotypic properties from genotypes (usually simplifying
models of environmental changes), while population research
ultimately aims to predict how populations evolve under a
Loewe (2016) Systems in Evolutionary Systems Biology. In: Kliman (ed) Encyclopedia of E
given set of environmental conditions (usually simplifying
models of IOB to just a few numbers, such as fitness, epistasis,
etc.). This mutual exclusion of broad areas of biology has
enabled much progress, but the simplifications have started to
break down for cutting-edge research. EvoSysBio can provide
more detailed and explicit views of the relevant abstractions to
facilitate more powerful evolutionary hypotheses that com-
bine the strengths of both traditions. The elegance of these
abstractions and the separation of concerns they enable be-
tween IOB and TOB are well illustrated by fitness landscapes,
which provide a powerful intuition for explaining how evo-
lution works (see Section Fitness Landscapes).

Based on these considerations and previous discussions
(Loewe, 2009; National Research Council USA, 2009; Loewe,
2012; O’Malley and Soyer, 2012; Soyer, 2012; Calvert, 2012;
Soyer and O’Malley, 2013; O’Malley, 2012; O’Malley et al., 2015;
Loewe et al., 2015–2009), EvoSysBio can be defined in a way
that leverages the integrative capabilities of fitness landscapes:
vol
EvoSysBio is a trans-disciplinary framework for constructing re-
liable, testable, interactive overviews of nestable, dynamic, multi-
dimensional fitness landscapes, which mechanistically predict:
(i) changes in fitness of individual organisms when their states and
environments change; (ii) how populations evolve when organisms
traverse fitness landscapes.
utionary Biology, vol 4, pp 297–318, Academic Press, Oxford, UK. Evosysbio.org
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This definition derives its formal power from IOB and TOB
models of how individual organisms and populations change
over time, respectively. These models can be efficient analytic
summaries or approximations or computational models
of much more complex underlying Continuous Time Markov
Chains; they may require simulations to explore them.
Reviewing relevant TOB theories (see e.g., Crow and Kimura,
1970, 2009; Charlesworth and Charlesworth, 2010; Kirkpa-
trick et al., 2002; this Encyclopedia) and IOB theories (see
e.g., Gillespie, 2007; Gillespie et al., 2013; Klipp et al., 2009;
Gutenkunst et al., 2007; Karr et al., 2015; Kirk et al., 2015;
Section Systems Science: The Whole is Different from the Sum
of Its Parts; Table 3) is beyond the scope of this article.

Informally, EvoSysBio and other work contributing to
relevant computational models and appropriate visualizations
might also be summarized as:
L

EvoSysBio aims to improve the real-world reliability of ‘flight-
simulators for multidimensional fitness landscapes.’
This analogy is easily adapted to multi-dimensional data
analyses, where researchers interactively explore interesting
local features while relevant data is automatically selected,
summarized, and presented by computers (as if ‘flying’
over the data; by comparison, manual coding for static snap-
shots feels ‘pedestrian’). This requires a deep computational
toolchain that integrates many diverse results extremely well;
the approach thus enables EvoSysBio to leverage the full
integrative power of real-world fitness landscapes, which are
conceptually as powerful as evolution itself – known as the
only theory general enough to unify biology.

In practice, this elegance comes at the steep price of re-
quiring a deep mechanistic understanding of real-world fitness
landscapes, an extraordinary challenge as relevant modeling
expertise is often lacking in biology, statistics, formal modeling
research, and more (see end of Section Systems Approaches to
Genome Evolution).

This definition of EvoSysBio encourages developing more
precise ways of defining fitness landscapes (see Tables 2 and 3
and Loewe, 2009, 2012) to reduce the confusion surrounding
the exact nature of these landscapes.
Fitness Landscapes

Sewall Wright (1932) introduced the now well-known concept
of fitness landscapes to provide an intuitive understanding of
how evolution works. These landscapes have been defined
in various ways and labeled by different names, including
adaptive landscapes, surfaces of selective value, and seascapes
(Svensson and Calsbeek, 2012; Gavrilets, 2004; Loewe, 2009;
Mustonen and Lassig, 2009). In statistics, similar landscapes
have been described as response surfaces (Box and Draper,
2007).
Intuition behind Fitness Landscapes

Fitness landscapes provide a strong intuitive analogy for how
evolution works. They are based on the familiar experience of
oewe (2016) Systems in Evolutionary Systems Biology. In: Kliman (ed) Encyclopedia of 
walking in a hilly landscape. By representing potential geno-
typic states as points in a plane with fitness as the height, it
becomes easy to see how evolution works:
Evo
In a fitness landscape, populations evolve by moving toward higher
(fitter) points whenever such points can be reached by the stochastic
movement of organisms between positions in the plane (e.g., by
mutation to other genotypic states); organisms tend to accumulate at
these positions (genotypes) because there they are more likely to
survive or reproduce (selection).
The strength of selection (selection coefficients) is governed
by an organism’s life history of survival and reproduction
in comparison to other organisms in the same popula-
tion. Selection and population size together govern the
probabilities that the genotypes existing in one generation
make it into the next, but these factors do not change geno-
types (which is done by mutation and recombination).
Thus, parents at higher points in the landscape have higher
probabilities of generating offspring that also live at these
higher points: the population evolves (see movie in Figure 3,
Movie 1).

At a very high level, this intuition correctly captures
the essence of what the complicated evolutionary mechanisms
are all about: explaining why organisms are likely to exist in
states of higher fitness. This intuitive nature of fitness land-
scapes has captured the imagination of many interested in
evolution, from popular science writers to professional evo-
lutionary biologists (Svensson and Calsbeek, 2012; Gavrilets,
2004; Loewe, 2009). Taken to one extreme, it leads to adap-
tationist interpretations of evolution that view populations
always at the top of some adaptive peak and ignore the
exceptions to the rule (e.g., quasi-species populations of
RNA-viruses mutate at such high rates that they form ‘bands
around peaks’ (Biebricher and Eigen, 2006); see Figure 3).
Taken to another extreme, fitness landscapes become neutral
networks, where all genotypes share the same fitness (Kimura,
1983).
Criticisms and Limitations

Critics of fitness landscapes as a concept highlight (1) the
frequent lack of precise definitions, (2) its abstract nature,
which does not easily lend itself to directly proposing new
experiments, and (3) general human difficulties with navi-
gating multi-dimensional spaces (Kaplan, 2008).

Little can be done about the limits of human imagination,
which often fails when attempting to translate the multi-
dimensional planes and heights of fitness landscapes into
more familiar spatial dimensions. Different useful visual-
izations have been developed for highlighting various aspects
of fitness landscapes (McCandlish, 2011), yet it is difficult
to convey an undistorted picture. Visualizing landscapes
from larger EvoSysBio projects may require interactivity, but
appropriate ‘flight simulators’ are missing. These problems
have not prevented numerous speculative drawings, which
are prone to misinterpretation. It might be beneficial for
the field to label them accordingly to contrast them with
attempts that precisely define and measure the much less
comprehensive real-world LIFTs (see below and Figure 4).
lutionary Biology, vol 4, pp 297–318, Academic Press, Oxford, UK. Evosysbio.org



Table 2 Concepts related to fitness landscapes

Concept Description

Fitness Landscape An abstract ‘landscape’ defined by causal ‘positions in a plane’ and their consequential ‘heights’ as defined by a
corresponding FCNet, mapping genotypic traits to IFTs (see below). Each position in a plane describes a potential
causal state of an individual organism and its given environment; both govern its height(s). Fitness landscapes are
near-impossible to measure, compute, or visualize, since both planes and heights often have very many
dimensions and their ‘points’ often turn into fuzzy distributions due to stochasticity. Nevertheless, Evolutionary
biology studies them due to their importance (even if resorting to MOCA-LIFTs, see below), and EvoSysBio
formalizes these studies to make them more efficient.

Ultimate EvoSysBio goal

Fitness Causality Network A network of nodes (data) and links (functions), together describing causal influences on consequential IFTs over a
given time period. Causal influences include genotypes, environments, and initial states (e.g., maternal
methylation patterns of DNA). Nodes in FCNets are defined by IFTs and links between nodes by LIFTs. A complete
FCNet of a single organism links all LIFTs (see Table 3) relevant for predicting the fitness consequences of
mutations and environmental changes.

FCNets define fitness
Landscapes

Landscape of Incomplete
Fitness Traits

An abstract representation of a fitness landscape that maps causal IFTs to consequential IFTs, thus providing a
causality statement about how input governs output, comparable to probabilistic mathematical functions. Inputs
are distributions of causal states of organisms (‘positions in a plane,’ e.g., mutations), and outputs are
distributions of consequential IFTs (‘local heights,’ e.g., survival, reproduction); both only apply to a given context
and time duration. IFT designations ‘causal’ and ‘consequential’ are relative to a LIFT, sometimes indicated by
adding ‘more’ to distinguish ‘more causal IFTs’ from the ‘most causal IFTs’ (e.g., DNA). If complete and rigorous,
these representations of fitness landscapes can be viewed as existence probability theorems that facilitate
predictions of the probability that a given number of organisms will exist in a given set of locations of the plane.
Such results are mathematically related to the analysis of Continuous Time Markov-Chains, which is extremely
useful for defining and analyzing such fitness landscapes. This technical aspect makes LIFTs markedly different
from the MOCA-LIFTs often used for illustration (see below). The strength of LIFTs is in their simplicity, which
enables precise measurements and simulations. See Figures 7 and 8 for examples.

LIFT, LIFTs are always
context specific

Incomplete Fitness Trait A phenotypic trait that impacts aspects of the fitness of an organism, its offspring, or its genetic relatives. Traits are
IFTs when they, at least occasionally, affect rates of survival, reproduction, merging, etc., or when they modify
evolutionary factors (mutation, migration, etc.) in one or more environments, at least to a small degree.

IFTs never quantify fitness
in full

Organism A single, individual system that consists of different parts that builds a whole, which – in biology – must be able to
replicate and may be nestable. Intra-Organism Biology (IOB) investigates how these parts work together. Extra-
Organism Biology (EOB) studies how each individual organism interacts with its environment and other
organisms of any type. If organisms (i) use hereditary information to grow on environmental resources and (ii)
can produce identical or similar descendants, then their populations necessarily evolve as modeled in Population-
Genetics Biology (PGB). Remaining indirect interactions are captured by Trans-Organism Biology (TOB), which
also integrates EOB and PGB at its level of replication (but not IOB). Note the simplification when a huge nested
stack of replicators is denoted as a ‘single multi-cellular organism.’

Single individual
replicating system

Nesting (in Organisms) A nest organism is a single, individual organism that contains one or more populations of different types of nested
organisms, which replicate(d) by themselves. A nested organism is a single, individual organism encapsulated by
a larger nest organism, which is the smaller nested organism’s environment. Organisms can be both nest and
nested organisms at the same time.

Organisms in organisms

Examples of nesting include mitochondria in cells in multi-cellular organisms, microbes in the gut, viruses in cells,
parasites in hosts, cancer in patients, and more. In each case, the smaller contained (‘nested’) organism is nested
in the larger containing (‘nest’) organism. The Trans-Organism Biology (TOB) of evolving populations of nested
organisms and the Intra-Organism Biology (IOB) of the nest organism affect each other, but the IOB of a nest
organism has to describe the TOB of its nested organisms well enough to exclude relevant surprises (e.g.,
evolution of tumors). Each population of nested organisms needs its own EvoSysBio analysis, where the IOB of
the nest organism plays the role of the ecological environment in the TOB of the nested organism. The complex
TOB of nested organisms can sometimes be simplified by assuming nested populations are homogeneous and
incapable of mutation.

MOCA-LIFT Massively Oversimplified Cartoonish Abstract LIFTs are essentially like LIFTs, but without much clarity on how their
various dimensions map to reality. Their cartoon-like distortions can be caused by complex transformations, lack
of data, imprecise definitions and other problems that are often difficult to resolve. The value of a MOCA-LIFT can
range from useless speculation to useful stop-gap (capturing some aspects of reality) to ground-breaking
‘Gedankenexperient.’While researchers put in the enormous effort to measure more rigorous LIFTs, they will likely
construct increasingly realistic MOCA-LIFTs, since their cartoonish nature facilitates smooth transitions from fact-
free figures to high-precision result repositories with varying degrees of usefulness. As a rule of thumb: LIFTs that
are (i) not fully defined by measurements or simulations, (ii) are not quantified in defined units, and (iii) do not
specify their real-world uncertainty are MOCA-LIFTs (see Figures 3, 4, and 6 for examples).

‘Instant’ LIFT cartoons

Notes: A fitness landscape provides an intuitive understanding of how complicated evolutionary mechanisms impact the fitness of an organism. To comprehend the complexities of
fitness landscapes and use them to predict the fitness consequences of mutational and environmental change, it is important to understand (i) the concept of an organism as it relates
to biology, (ii) how researchers use Incomplete Fitness Traits (IFTs) to construct Landscapes of IFTs (LIFTs) that represent different aspects of the fitness landscape of an organism,
and (iii) how IFTs and LIFTs form FCNets, which mediate finely tuned trade-offs in response to the environment. Only when complete FCNets are fully quantified is it possible to
compute a complete fitness landscape, which can predict the distributions of phenotypes and fitness from an organism’s distributions of genotypes and environments. See Table 3 for
the types of LIFTs that can collectively bridge the whole gap from DNA to fitness.
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Table 3 Fitness predictions from genotypes are, in principle, enabled by the types of Landscapes of Incomplete Fitness Traits (LIFTs) shown here

PT: Plane Type - LT: Landscape Type - HT: Height Type

Compute: Input type - Compute: Function type - Compute: Output type
FCNet: causal Node type - FCNet: Link type - FCNet: consequential Node
More causal IFT type - LIFT: Landscape of IFT type - More consequential IFT type
Type of multidimensional point in the
causal plane of a FCNet node is given
by its input data type that governs
height as calculated by its LIFT type.

- Type of LIFT that represents a
mapping function type that
accepts a point in its causal
plane as input and computes a
consequential height as output.
LIFTs define types of links
between FCNet nodes in a larger
FCNet.

- Type of multidimensional point of
consequential height that integrates
all effects from replication (with all
existing nested levels). It is computed
as output type by its LIFT from a given
input point in its plane type.

PT7: - LT7: - HT7:
Organism life history of fitness traits:
survival, reproduction, etc.

Summarizing statistics of survival,
reproduction, etc. for relevant
groups of organisms over a
given duration of time in a
specified environment

Fitness summary statistics for organism
genotypes in specified environments
per time interval

PT6: - LT6: - HT6:
Real-world Incomplete Fitness Traits
(RIFTs)

Balancing trade-offs in IFT
networks of organism life-history
and physiology

Organism life history: survival,
reproduction, etc.

PT5: - LT5: - HT5:
Simulated Incomplete Fitness Traits
(SIFTs)

Mapping simulations (in silico
IFTs) to observed real-world IFTs

Real-world Incomplete Fitness Traits
(RIFTs)

PT4: - LT4: - HT4:
Time-series of phenotypic traits Extracting fitness relevant traits

(IFTs) from time-series analyses
Simulated Incomplete Fitness Traits
(SIFTs)

PT3: - LT3: - HT3:
Molecular functions network Simulating dynamic time-series

predictions (over multiple scales)
for a given initial state in a given
environment

Time-series of phenotypic traits

PT2: - LT2: - HT2:
Molecular structures Abstracting the structural biology

of structure�function
relationships

Molecular functions network

PT1: - LT1: - HT1:
Hereditary information Folding of expressed hereditary

information
Molecular structures

Note: All LIFTs contribute some aspect to constructing the full Fitness Causality Network (FCNet) that governs the dynamic distributions of various incomplete fitness traits of an
organism. Each FCNet node connects at least two LIFTs (In - Out; see header row for terminology illustrative for different contexts). The fitness of an individual organism depends
on the structure of its FCNet and on its genotype (broadly defined as any hereditary material), its environment (abiotic and biotic), its initial state (immediately after being ‘produced’),
and the time period over which the expected change in organism numbers is to be measured. Real-world examples exist for all LIFT types in this table, albeit spread across different
organisms (see Loewe, 2009). Defining a full FCNet for any single organism will be a major milestone for EvoSysBio and requires the computational integration of all LIFT types in
this table that are required for representing the organism. These LIFTs require many independent studies of Simulated IFTs (SIFTs) and Real-world IFTs measurements (RIFTs). The
huge costs and high risks of pursuing this integrative vision are matched by the high rewards of enabling rational, in silico analyses of arbitrary mutations. Hence, such EvoSysBio
work is at the core of personalizing medicine and reliably predicting evolution.
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Fitness Landscapes Map to Real-World Concepts

Criticism of the notorious lack of quantitative and semantic
precision in depictions of fitness landscapes does not imply
that they are not real or cannot be defined rigorously.

(i) As introduced above, real-world fitness landscapes are by
definition all possible states of real-world populations of
replicating organisms, which by definition are subject to
the five fundamental factors of evolution that describe
how organisms traverse fitness landscapes.
Loewe (2016) Systems in Evolutionary Systems Biology. In: Kliman (ed) Encyclopedia of 
(ii) Models of fitness landscapes aim to approximate real-world
fitness landscapes by choosing features deemed relevant
by modelers; thus, human reconstructions of fitness
landscapes are by definition not perfect.

(iii) The quality of these approximations is determined by
testing how useful their predictions and/or insights are
for navigating their real-world counterparts.

(iv) Neither existence nor quality of these approximations
influences real-world fitness landscapes, as long as they
do not affect how humans shape their world.
Evolutionary Biology, vol 4, pp 297–318, Academic Press, Oxford, UK. Evosysbio.org
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Figure 3 Future EvoSysBio ‘flight simulators for fitness landscapes’ might provide dynamic overviews of how populations evolve on measured
data-rich Landscapes of Incomplete Fitness Traits. This MOCA-LIFT (see Figure 4) shows a snapshot from a cartoonish movie of a population that
evolves on a static MOCA-LIFT (for more details, see also links in Section Relevant Websites). Picture credits: © Østman and Olson (2014a),
reusable under CC-BY-SA 3.0.
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(v) Human measuring or managing can severely limit the
ability of EvoSysBio to improve model quality if these
actions substantially perturb real-world fitness landscapes.

Fitness landscapes play a central role in the EvoSysBio
definition because they integrate all fundamental factors of
evolution. Quantifying fitness landscapes accurately is a key
Loewe (2016) Systems in Evolutionary Systems Biology. In: Kliman (ed) Encyclopedia of E
long-term goal for EvoSysBio (and other systems approaches
to genome evolution, even if they have other priorities).

Though compelling, the mechanistic goals of EvoSysBio
can be extraordinarily difficult to achieve. In such cases, less-
than-ideal fitness landscape definitions can enable important
progress. These may (1) only describe observed phenomena
without requiring explicit rational hypotheses on real-world
volutionary Biology, vol 4, pp 297–318, Academic Press, Oxford, UK. Evosysbio.org
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causal mechanisms, or (2) are only system-specific and so en-
meshed with their particular context that abstraction obscures
their meaning, or (3) are so highly abstracted from the real world
that they are essentially void of interpretable biological facts.
How to Avoid Misreading Fitness Landscapes

The following simple principles might help to keep the useful
aspects of fitness landscapes while reducing the confusion:

1. Fitness landscapes exist for all organisms that produce
offspring at all nested levels of replication, even if the
landscapes are impossibly difficult to define.

2. Pictures mislead. A single picture of a fitness landscape is
usually misleading, as it can rarely be created without
distorting vital views of the underlying model when dis-
tilling the potentially many dimensions of a plane and
height down to the three dimensions humans are used to.

3. Uncertainty quantifies accuracy. As elsewhere, quantifi-
cations of fitness landscapes are at most as reliable as the
uncertainty quantifications performed for them from di-
verse perspectives to obtain reliable error bounds. Hence,
the qualities of uncertainty measures of a landscape indi-
cate the accuracy with which it was measured.

4. Fitness has many measures. The definition of fitness
landscapes is intricately linked to the definition of fitness,
which has its own challenges. While it first appears easy
enough to measure (survival, reproduction), crucial com-
plications appear when the subtle timing and indirect ef-
fects of real life are accounted for as well. Life history
theory has compiled a substantial body of theory on how
multiple traits combine in order to contribute to fitness
(Stearns, 1992, 2000; Brommer, 2000; Houle et al., 2011;
Gardner, 2015; Gardner and West, 2014).

5. Incomplete Fitness Traits (IFTs) are easily defined. The
current inability to define or compute complete fitness
measures does not prevent the definition and measure-
ment of IFTs, which are defined as having at least some
probability to impact survival and/or reproduction in at
least one known environment (irrespective of whether the
traits are continuous or not). Defining such IFTs is com-
paratively easy, and predicting them computationally, as
well as observing them in the lab, is already possible for
some IFTs. Thus, researchers can accumulate now the
observations and prediction capabilities required for later
EvoSysBio analyses.
From MOCA-LIFTs to Reasonable LIFTs

Intuitive appeal with difficulties of measurement and visual-
ization have generated many speculative depictions of ‘fitness
landscapes’; most are probably misleading and deserve a
name that distinguishes them from real-world measurements.
Figure 4 shows such an entirely fact-free Massively Over-
simplified Cartoonish Abstract Landscape of Incomplete
Fitness Traits, or in short, a MOCA-LIFT:

• Massively Oversimplified: the many dimensions of plane
and height are arbitrarily distilled to one or two
Loewe (2016) Systems in Evolutionary Systems Biology. In: Kliman (ed) Encyclopedia of E
dimensions, often without defined mapping or appropriate
justification;

• Cartoonish: the landscape only captures a causality state-
ment; a lack of real-world data precludes any further
statements;

• Abstract: plane and height do not represent any biological
systems in the real world.

Unless spoiled by ‘MOCA properties,’ LIFTs represent real-
world progress in EvoSysBio, as LIFTs measure, model, simu-
late, and/or summarize real-world biology in a reproducible
way:

• Landscape: a function that maps a multi-dimensional point
in a plane of more causal IFTs (input) to its computable
multidimensional height, which is a more consequential IFT
(output);

• Incomplete: the recognition that IFTs are not complete and
do not even attempt to be; IFTs may or may not affect other
traits or be affected by other traits; all LIFT statements are
conditional on ‘all else being equal’;

• Fitness: the statement that some aspect of this trait affects
survival, replication, or some other evolutionary factor
directly or indirectly at least with a small probability in
some environments;

• Trait: a type of property of an organism; if traits do not
affect fitness, they may be only phenotypic (e.g., gene ex-
pression without impact on fitness is irrelevant), or neutral
(e.g., DNA sequences never expressed and without any
impact on fitness).

It often makes more biological sense to investigate LIFTs
than to attempt direct predictions of fitness (which often re-
quire abstracting too many complex processes at once, in-
creasing the likelihood of failure). At their core, LIFTs can be
thought of as the basic building blocks of fitness landscapes;
they provide the most direct link between real-world biology
and EvoSysBio simulations, either by interpolating real-world
measurements or by simulating known processes. Deliberately
ignoring the bigger picture of fitness in favor of simplicity
makes basic LIFTs much easier to use and provides two
additional conceptual advantages, one experimental and one
conceptual.

Experimentally, the artificial nature of many LIFTs can re-
move them far enough from the finely tuned fitness trade-offs
that dominate in the wild; it might thus be easier to find IFT
mutants that are measurably different from wild-types, en-
abling tests of in silico prediction quality (see Loewe, 2009;
Figure 3 there, read IFT for Candidate Fitness Correlate).

Conceptually, large collections of basic building-block
LIFTs may facilitate the construction of Fitness Causality
Networks (FCNets, see Table 2), which capture all causal in-
fluences that govern the expected distribution of fitness values
for an individual organism over a given time interval in a given
environment. Table 3 gives an overview of the diverse LIFT
types and fitness causality node types that enable, in principle,
the construction of a full causality chain, which ranges from
DNA to fitness. Biological examples for each particular LIFT
type have been given elsewhere (see discussion of Table 2 in
Loewe, 2009) and details of linking them into full FCNets are
beyond the scope of this article.
volutionary Biology, vol 4, pp 297–318, Academic Press, Oxford, UK. Evosysbio.org
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An alternative to mechanistic predictions of LIFT networks
is to observe evolution by empirically measuring the speed at
which different genotypes grow in a given environment. Such
direct IFT measurements can be conducted for each individual
genotype, as has been done for bacterial genotypes with re-
spect to their ability to survive antibiotics (see below, Evo-
SysBio Milestone 5: Antibiotics Resistance Evolution). Several
empirically observed LIFTs (Weinreich et al., 2013) have been
compiled for visualization with the MAGELLAN tool (Brouillet
et al., 2015). These measurements can provide important high-
resolution views of very small local LIFT areas, assuming the
context of otherwise constant fitness landscapes.

It is also possible to mix empirical observations of IFTs with
statistical modeling in order to predict fitness landscapes with
very many points frommeasurements of much fewer genotypes.
As more big data sets become available, this approach becomes
increasingly powerful, fueling a revival of the fitness landscape
paradigm (Schuster, 2012). It has been used to computationally
explore the complexity of HIV for in vitro LIFTs (Kouyos et al.,
2012). Statistical methods and quasi-species theory have
also been employed to infer fitness landscapes in vivo using
sequenced HIV samples from patients (Seifert et al., 2015).

As evolutionary geneticists have struggled with the question
of how to best capture relevant glimpses of fitness landscapes,
they have developed a number of useful abstractions. Some of
these quantify particular aspects of fitness landscapes and
build on formalisms, which produce general complex land-
scapes of different types (Orr, 2005; Gravner et al., 2007).
Others analyze fitness landscapes from particular angles,
including speciation (Gavrilets, 1997, 2004), game theory
(Nowak and Sigmund, 2004), and more (e.g., Svensson and
Calsbeek, 2012; Richter and Engelbrecht, 2014). Also, evo-
lutionary geneticists have defined evolutionary parameters
that, in principle, could be measured in the real world or be
computed from fully known fitness landscapes. These provide
excellent summaries of particular aspects of fitness landscapes.
Abstractions for Aspects of Fitness Landscapes

The complexity of multi-dimensional fitness landscapes and the
notorious difficulties of exploring them have long been motiv-
ating evolutionary biologists to develop concepts that quantify
more limited aspects of fitness landscapes, sometimes empiric-
ally or without requiring a full understanding. Such incomplete
empirical summary statistics of fitness landscapes include:

• distributions of mutational effects on fitness: pick a point on the
landscape as wildtype starting point, jump into all dir-
ections that represent genotype changes from naturally
occurring mutations, then compare fitness to observe
selection coefficients (e.g., Schenk et al., 2012; Eyre-Walker
and Keightley, 2007; Loewe and Charlesworth, 2006;
Loewe and Hillston, 2008);

• epistasis: interactions between mutations that increase or
decrease the effects of additional mutations play a major
role in evolution, but nomenclature can be confusing
(Wolf et al., 2000; Phillips, 2008; Loewe and Hill, 2010a);
epistasis captures the gene-regulatory and biochemical
reaction network complexity of IOB (Phillips, 2008), so it
is no surprise that higher-order epistasis can result in
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surprising changes of fitness (Weinreich et al., 2013); it can
sometimes be measured (Schenk et al., 2012; Schenk
and de Visser, 2013); it can determine the accessibility of
certain evolutionary paths (Poelwijk et al., 2007; Weinreich
et al., 2006) and affect robustness, even within a protein
(Bershtein et al., 2006); epistasis is also important for
understanding the evolution of antibiotic resistance (e.g.,
MacLean et al., 2010; Hall and MacLean, 2011; Schenk
et al., 2012; Schenk and de Visser, 2013);

• robustness: helps developmental or simpler processes pro-
duce patterns that reduce observable changes in pheno-
types (e.g., Wagner, 2014, 2012; Payne and Wagner, 2014);

• fragility or capacitance: is the opposite of robustness; increases
variability beyond usual amounts (e.g., Bergman and
Siegal, 2003).

These measures can be used for investigating the evolva-
bility of a system (e.g., Wagner, 2005) or its mechanisms of
adaptation (e.g., Wagner, 2011). More on summary statistics
of fitness landscapes can be found elsewhere (see Loewe, 2009
and in this Encyclopedia).
Practical Relevance of EvoSysBio

Ideas for applying EvoSysBio to solve practical problems are
easy to conceive. From agriculture to medicine to zoos, repli-
cating organisms are everywhere. For some, replication is de-
sirable (e.g., rare species in zoos), for others not (e.g., cancer
cells, agricultural pests, superbugs). Humans can sometimes
shape the impact of these organisms as planned by increasing
growth of desired organisms and blocking growth of undesired
ones. Success usually requires the ability to predict growth
with some reliability, which in turn often requires a deeper
understanding of evolution, as also needed for computation-
ally exploring potential management decisions and their side
effects. EvoSysBio models can help by providing a rich
framework that facilitates the integration of all important as-
pects of IOB, EOB, PGB, and TOB (see Table 1). If not over-
whelmed by statistical prediction errors or numerical rounding
errors, such mechanistic models might reliably predict im-
portant practical aspects of very rare, high-impact events, such
as the extinction of endangered species, catastrophic virus
epidemics, the evolution of superbugs resistant to all known
antibiotics, or the origin of tumors.

The next milestones on the long journey to formal Evo-
SysBio analyses mirror many models in mixing mechanistic
and descriptive aspects. Using their motivating questions and
chosen levels of abstractions, most models combine known
cause and effect mechanisms with a coarse-grained phenom-
enological basis that merely describes statistical estimates of
empirical data. For example, modeling metabolic regulation
neither requires a simulation of the full quantum mechanics of
ribosomes (too fine-grained) nor empirically observed cell-
division rates (too coarse-grained). Summarizing individuals
as fitness values is the ultimate coarse-graining in IOB; how-
ever, to merge IOB and TOB requires the inclusion of sub-
stantially more details than currently possible. The following
milestones mark important points in building the capabilities
for such broad integration.
volutionary Biology, vol 4, pp 297–318, Academic Press, Oxford, UK. Evosysbio.org
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EvoSysBio Milestone 1: Observed LIFTs

This marks the definition and observation of a new con-
sequential IFT for a set of diverse causal traits that mech-
anistically specify how consequential IFTs are computed from
causal traits, irrespective of how many LIFT types from Table 3
are implicitly integrated. For example, consider the low
probability that light-colored mice will be caught by birds of
prey on sandy hills (Linnen et al., 2009). It is easy to map
genotypes to phenotypes if coat color is controlled by few
known genes and mutations of coat color can be recognized
in DNA sequences. Thus, a LIFT for survival in such an
environment can be trivial to predict if good measurements
of predation risks are available for different coat colors. Full
measurements of fitness are much more complicated, as mice
can die from many causes and reproductive success requires
essentially a prediction of everything a mouse can do in that
environment. The complexities of such measurements are be-
yond what most researchers would be willing to contemplate,
let alone adding similarly complex models for the corres-
ponding birds of prey, whose survival may depend on their
ability to learn how to detect the mice (adding complex
neuronal and evolutionary feedback loops). This example
illustrates key reasons behind the ‘Incomplete’ in IFTs: meas-
urements of mouse survival are clearly fitness relevant; yet they
are also clearly incomplete and need to be complemented by
additional studies that might never be conducted if ‘fitness has
been measured in this mouse.’

A simpler example uses flux-balance analysis to predict
in silico how Escherichia coli evolves by adapting to a certain
environment (Edwards et al., 2001). It only needs a network of
relevant metabolic reaction stoichiometries and the assumption
of flux-balance equilibrium (influx ¼ efflux everywhere). Such
models are easily coupled with genomic datasets that indicate
the presence of genes for particular enzymes that catalyze
certain metabolic reactions; thus, inferring relevant metabolic
networks becomes much easier. Additional empirically ob-
served LIFTs are listed elsewhere (Brouillet et al., 2015).
EvoSysBio Milestone 2: Fragmented LIFTs

Biology has now conceptually mapped much of the most
causal LIFTs in the FCNet of model organisms (DNA se-
quences available). It has also followed diverse LIFTs in the
network, spanning all the way to direct fitness contributions.
At least since 2009, it has become possible to provide specific
realistic examples for all LIFT types specified in Table 3 (see
discussion of Table 2 in Loewe, 2009). Thus, each critical step
on the full path from DNA to fitness can, in principle, be
modeled; such LIFT-type models have been developed in-
dependently in different model-organisms, greatly compli-
cating a potential integration. As biological research continues,
the addition of increasing numbers of LIFTs will simply con-
nect different types of LIFTs in the same organism.
EvoSysBio Milestone 3: Simulate a Whole Cell

While the first two milestones were passed some time ago,
somewhere on the EvoSysBio journey toward integrating IOB
and TOB it must become possible to mechanistically simulate
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a whole cell in a simple lab environment. This milestone is
well aligned with the goal of Evolutionary Cell Biology (Lynch
et al., 2014), which requires the quantitative integration of a
very large number of diverse quantitative models of cellular
subsystems. It has recently been demonstrated that a very
simple (but complete) single cell in a simple growth medium
can be simulated at the level of biochemical interaction over a
whole cell cycle (Karr et al., 2012), though much work remains
before such simulations become robust enough and available
for more complicated cells. While organizing and curating the
thousands of parameters required for simulating the complete
biochemical reaction network of a single cell remains chal-
lenging (Macklin et al., 2014), obtaining reasonable values for
them can be even harder (Karr et al., 2015). New experimental
methods provide a wealth of diverse information about
cellular processes that was previously difficult to conceive:
genomic ontologies are being constructed to list all genes,
types of RNAs and proteins (many with functional anno-
tations); advances in microscopy are approaching imaging at
atomic resolution in cells (Kuhlbrandt, 2014); fluorescent
proteins allow the recording of live single-cell time series of
intracellular amounts or tracking the movement of individual
molecules. In fact, for some types of cells, it is no longer clear if
EvoSysBio is more limited by the need to observe relevant data
or the need to organize, interpret, and integrate data that has
already been collected (Macklin et al., 2014). This growing
need for more efficient data analysis can also be seen in se-
quencing, where the cost of analysis can substantially exceed
the cost of obtaining raw data.
EvoSysBio Milestone 4: Predict Mouse Cancer

Successfully predicting the growth of diverse, complex cells on
controlled growth media might encourage addressing the
challenges posed by more complex ecologies. The need to
understand the full-scale ecology of an animal or plant can be
postponed by focusing on the small-scale ‘internal ecology’ of
the body of a mouse from the perspective of cancer cells. In
cancer cell biology, cells cannot grow outside their ‘mouse-
body-ecosystem’; from an experimentalist perspective, mice
with known cancer mutations are about as well-controlled and
well-studied as ecosystems can be. While predicting the full
IOB of a mouse will remain very unlikely for some time, it is
easily replicated with high accuracy by growing more mice, all
of which can be analyzed with the tools of modern biology.
Thus, in comparison to the full-scale EOB of wild mice, it is
relatively easy to quantify the IOB of mice for the purposes of
describing the environment that controls much of the possi-
bilities of mouse cancer cells. Such mice facilitate addressing a
number of interesting challenges in EvoSysBio and cancer re-
search, simply because they can be so extraordinarily well
characterized. Given the big interest in mouse cancer research,
important breakthroughs are more likely to occur here first.

Cancer therapy resistance remains the most difficult
challenge in the diagnosis and treatment of cancer. It is en-
abled by diverse populations of cancer cells, some of which
keep surviving therapy to grow back. Populations of cancer
cells are, in principle, governed by the same complex TOB
processes studied in ecology and evolutionary biology. Meas-
urements of survival and reproduction rates of cells enable
volutionary Biology, vol 4, pp 297–318, Academic Press, Oxford, UK. Evosysbio.org
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predicting evolutionary outcomes of a population in a given
environment. Survival of cancer cells in therapy depends on
the dynamics of intracellular reaction networks, which can, in
principle, be studied with the modeling tools of CSysBio.
EvoSysBio aims to combine the theoretical modeling with the
real-world observations needed to simulate evolutionary out-
comes for cancer populations with increasing precision.

Cancer is an evolutionary process of a population of cells
that replicate too much and can grow outside of their normal
boundaries. A substantial number of survival and reproductive
traits in cancer cells provide a target for natural selection
among them (see Figure 5): Evolutionary factors like surviving
attacks from the immune system, mutating, migrating to new
tissues, and other such traits have vexed cancer biologists for a
long time (Hanahan and Weinberg, 2011). It is not difficult to
define corresponding IFTs for cancer cells and all fundamental
factors of evolution are active (Gerlinger et al., 2014).

Mouse cancer as a milestone for EvoSysBio is reasonable
due to high independent interest, a wealth of existing infor-
mation, and readily applicable methodologies. Once it be-
comes routinely possible to simulate the biochemistry of
whole cells with reasonable accuracy, these techniques could
be used to quantify relevant mouse IOB and define the TOB
for a type of mouse cancer that is comparatively well under-
stood. It is relatively easy to compare predicted numbers
and sizes of a given tumor type with actual observations. This
could even be done in many replicate mice to explore the
impact of chance and necessity in cancer evolution at a very
fine-grained level. Such analyses are impossible in large-scale
Loewe (2016) Systems in Evolutionary Systems Biology. In: Kliman (ed) Encyclopedia of E
ecology, since ‘re-running’ the world is impossible. Mouse
cancer provides unique opportunities for learning about the
dynamic aspects of LIFTs in a context where real-world
checks are conceivable, as cancer cells are affected by dynamics
in their environment (rhythms of mouse life; attempts
to cure cancer, etc.) and in return affect their environment
(eventually killing the mouse). This might eventually allow
turning the dynamic MOCA-LIFT in Figure 6 into a LIFT
(Movie 2).

Ongoing discussions between evolutionary biology and
cancer biology (Horne et al., 2015) include work in evolutionary
modeling (Nagy, 2005), ecology (Korolev et al., 2014), investi-
gations of life-history trade-offs (Aktipis et al., 2013), evidence
for positive selection (Crespi and Summers, 2006), evidence for
the role of mutations during development (Frank, 2010),
interactions between cancer and viruses (Brandon Ogbunugafor
et al., 2013), and epigenetics (Swanton and Beck, 2014).
EvoSysBio Milestone 5: Antibiotics Resistance Evolution

The first part of this milestone predicts how fast bacterial
model-organism cultures evolve resistance to well-understood
antibiotics under defined laboratory conditions without nested
organisms, a challenge comparable to Milestone 3. Adding
nested organisms increases difficulties to the level of Milestone
4 by requiring the specification of a TOB for the bacteria.
However, in simple applied real-world contexts, it is no longer
possible to repeat the ‘world history’ for improving the model
volutionary Biology, vol 4, pp 297–318, Academic Press, Oxford, UK. Evosysbio.org
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Figure 6 Fitness always depends on the environment. Frequent environmental changes can trigger perpetual changes in fitness, resulting in a
constant need for adaptation. Dynamically changing Landscapes of Incomplete Fitness Traits pose additional challenges to EvoSysBio ‘flight
simulators,’ which now also have to predict environmental properties and how they might be affected by populations of organisms over time. Here a
snapshot is shown from a cartoonish movie of a population that evolves on a dynamic MOCA-LIFT (for more details, see also links in Section
Relevant Websites). Picture credits: © Østman and Olson (2014c), reuse under CC-BY-SA 3.0.
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Figure 7 Evolution can take different paths to increase an IFT, such as in this experimentally observed LIFT snapshot of antibiotics resistance
from five point mutations in a bacterial gene, where they can accumulate from the original TEMWT genotype to the TEMRes with different
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(tumor evolution is repeatable by using new mice; but hospitals
are difficult to sterilize, turning their resistance evolution into a
historic process). Nested organisms, reservoirs, and very com-
plex ecologies further complicate the picture by introducing
many unknowns of potential importance. Unfortunately, these
difficulties are matched by the urgency of the problem.

Prescribed doses of antibiotics have been climbing and
now some bacterial strains are resistant to all known
antibiotics. The evolution of antibiotic resistant bacteria has
been discussed since antibiotics were first used (Neu, 1992;
Normark and Normark, 2002; Choffnes et al., 2010; Perros,
2015; Baker, 2015): How can we use these antimicrobial
‘super-drugs’ in a way that reduces the ability of ‘superbugs’ to
evolve complete resistance? If we do not succeed, bacterial
infections will become more deadly until one of the biggest
medical advances of the twentieth century will have lost
practical relevance. Predicting antibiotic resistance evolution
(Martinez et al., 2007) might allow us to find ways to use
antibiotics that minimize the evolution of resistance.

Challenges of dynamic, multi-level simulations of evo-
lution need to be mastered for truly understanding antibiotics
resistance evolution. At the molecular level, questions include
how many mutations a bacterial protein needs to accumulate
to confer a higher level of resistance to the cell that produced
it. The molecular features of such a protein can be interpreted
as IFTs that define a protein-based LIFT (Meini et al., 2015).
The interplay of new mutations with the other content in
crowded cells leads to an IFT at the cellular level: the Min-
imum Inhibitory Concentration (MIC) of an antibiotic above
which a given bacterial cell is not longer able to grow. Figure 7
shows the results of experimentally measuring a small, but
combinatorially complete LIFT for an antibiotic-based IFT
defined by a corresponding MIC (Weinreich et al., 2006). At
intermediate levels, events in organisms need to be modeled,
since bacteria evolve during an infection. On geographic
scales, the diverse use of antibiotics contributes to resistance
evolution in many unexpected places (e.g., soil in agriculture,
biofilms in hospitals). Despite progress, it is not clear how to
optimize the use of antibiotics overall in hospitals and agri-
culture (where infected humans can carry resistant super-bugs
between both, unwittingly exposing others). International
travel adds further complications by moving infections over
large distances. The challenges of both dynamic and static
fitness landscapes (Figures 6 and 3) apply to antibiotics re-
sistance evolution, as changes in antibiotics usage policies can
easily generate either.

Complex evolutionary phenomena, such as epistasis,
mutation rates in the stationary phase of bacteria and many
other effects are important for understanding the evolution of
antibiotics resistance (Loewe et al., 2003; MacLean et al., 2010;
Hall and MacLean, 2011; Schenk and de Visser, 2013; DePristo
et al., 2007; Poelwijk et al., 2007; Weinreich and Knies, 2013).
For example, resistant bacteria often pay a fitness cost unless it
is mitigated by compensatory mutations (Andersson, 2006).
Unfortunately, antibiotics are often used in a way that facili-
tates the evolution of antibiotics resistance by creating en-
vironments where sublethal concentrations of antibiotics can
select for resistant bacteria over longer periods of time (e.g.,
in sewers or agriculture; see Figure 8, (Gullberg et al., 2011)).
To preserve one of the biggest medical success stories of the
Loewe (2016) Systems in Evolutionary Systems Biology. In: Kliman (ed) Encyclopedia of E
twentieth century requires continually solving the riddles that
bacteria pose by evolving antibiotics resistance (Choffnes et al.,
2010; Perros, 2015; Baker, 2015). Given that prokaryotes
rule the world (by numbers and by speed of growth), it will
require the best, most precise, and most integrated under-
standing of evolution to outsmart them – with the help of
many computers.
Conclusions

Even though the New Evolutionary Synthesis started in the
1920s and biological progress has continued at a phenomenal
pace, much biology remains to be discovered and integrated.
The New Synthesis is being renewed each day when researchers
integrate new results into its framework through relentless
synthesis (Wray et al., 2014). The explosion of expertise on
evolution and the complexity of systems science require re-
liable computational tools to give researchers a chance to keep
up with the pace of the New Synthesis. Success critically de-
pends on the strength of underpinning abstractions, which
may be measured by intangibles such as conceptual clarity,
completeness, simplicity, and elegance. The power of good
abstractions is the best defense against the swamp of
volutionary Biology, vol 4, pp 297–318, Academic Press, Oxford, UK. Evosysbio.org
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complexity that otherwise mires researchers in endlessly re-
dundant repeats of researching, reinventing, and rediscovering.
There is nothing more practical than a good theory.

The ambitious aims of EvoSysBio for understanding and
reliably predicting evolution depend on accelerating the pace
of the relentless New Evolutionary Synthesis to which Evo-
SysBio is ultimately contributing. This can be done by making
it easier to connect the five fundamental factors of evolution to
results from models of complex Intra-Organism and Trans-
Organism Biology. Toward this end, this article provides a
high-level overview of FCNets and LIFTs, but many details
remain to be worked out.

The relentless New Synthesis can benefit from lessons
learned by programmers in their struggles in the swamp of
complexity: aim for ‘as simple as possible, but not simpler’
(Raymond, 2003). To make EvoSysBio efficient, this view
of Occam’s Razor needs to inspire new computational ap-
proaches for knowledge organization, provenance, modeling,
reliability, precise uncertainty quantification, ease of auto-
mation, abstraction management, automatic testing, efficient
debugging, and reproducibility. Without such innovations,
EvoSysBio researchers will either get stuck in the complexity
swamp of constructing FCNets (and debugging their depend-
encies) or get lost in the fog of finding signals drowned by
noise (due to missing uncertainty quantification).

Biology’s complexity is so pervasive that efficient ap-
proaches for solving these problems often require semantic
architectures with the strength of general programming lan-
guages that can integrate most biological research, if not all.
Developing such general semantics is usually slow and chal-
lenging, but enables great leaps forward once the right concepts
are ready for automation. Given the slow pace of developing
semantics and the complexity of evolution, it may take Z30
years until integrated computational pipelines can enable the
use of all state-of-the-art expertise to mechanistically predict the
effects of unknown mutations in well-studied model organ-
isms. Analyzing resulting fitness landscapes with interactive
‘multidimensional flight simulators’ may sound like science
fiction today – perhaps like ‘population genomics’ would have
sounded in the 1970s. Yet it took only about 30 years to go
from a method of DNA sequencing to population genomics.
Maybe it is possible to start transitioning from a formal def-
inition of EvoSysBio to usable flight simulators for fitness
landscapes as the New Evolutionary Synthesis approaches its
100th year of relentless integration service. A bit of strategic
long-term thinking might help to avoid swamps and fogs to
make evolutionary research more efficient in the long run.
See also: Adaptive Landscapes. Evolutionary Medicine I. An
Overview and Applications to Cancer. Gene Interactions in
Evolution. Modularity and Integration. Modularity and Integration in
Evo-Devo
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